|
(n1+n2+n3+...+n99)^2<br />=n1*n1+n1*n2+...+n2*n1+n2*n2+.....n98*n99<br />=[n1*n2+n1*n3+n1*n4+...+n2*n3+n2*n4+...+......+n98*n99]+[n2*n1+n3*n1+n3*n2+n4*n1+n4*n2+.....+n99*n1+n99*n2+...+n99*n97]+(n1^2+n2^2+...+n99^2)<br />=2*(n1*n2+n1*n3+n1*n4+...+n2*n3+n2*n4+...+......+n98*n99)+(n1^2+...+n99^2)<br />=2*A+99<br />其中(n1^2+...+n99^2)=99, (n1+n2+...+n99)=2*k+1<br />A=n1*n2+n1*n3+n1*n4+...+n2*n3+n2*n4+...+......+n98*n99<br /><br />(n1+n2+...+n99)^2=1,9,25,49,...,(2*k+1)^2<br /><br />当(n1+n2+...+n99)>10时,A>0.<br />A最小正值为(11^2-99)/2=11<br />A的最小值=(1-99)/2=49 |
|